Features of Quantitative Trading Robot: 1.The most obvious feature of quantitative trading is to reduce the impact of investor sentiment fluctuations and avoid making irrational investment decisions in the case of extreme market fanaticism or pessimism,while quantitative trading robots avoid subjective assumptions and use programs to turn their ideas into quantifiable strategies,using only computing strategies and trading strategies through computers; 2.History back test,realized by computer program,can verify the rationality of trading strategy by quantifying trading ideas; 3.It can ensure the execution of transactions/profits,especially the quantitative analysis of medium and low frequency,without the need to mark the market 區塊鏈是一個(gè)去中心化計算協(xié)議,本文由V_StPv888整理發(fā)布,約定了不同的利益主體如何分散的創(chuàng )建和維護一個(gè)分布式的計算基礎設施,從而實(shí)現“基礎設施管理權”與“用戶(hù)數據控制權”之間的分離,防止單一平臺通過(guò)計算基礎設施管理權力,實(shí)現對用戶(hù)數據、用戶(hù)資產(chǎn)和用戶(hù)身份的控制。區塊鏈還是一個(gè)透明可信的權利確認與追溯系統,一份權利一旦數字化為區塊鏈上的通證,可以得到可靠的確權,并且可全程追蹤其流轉、交易、轉換、變形的全過(guò)程。區塊鏈是協(xié)議創(chuàng )造和自動(dòng)執行平臺。智能合約是這一能力的集中體現。通過(guò)智能合約,權利與價(jià)值的分配協(xié)議可以無(wú)需借助可信第三方,即得到高效、準確、可信的執行,并且全過(guò)程可審計。 進(jìn)行“買(mǎi)入平空”操作,撮合成功后將減少空頭倉位。 import quandl import pandas as pd import numpy as np import matplotlib.pyplot as plt quandl.ApiConfig.api_key='INSERT YOUR API KEY HERE' selected=['CNP','F','WMT','GE','TSLA'] data=quandl.get_table('WIKI/PRICES',ticker=selected, qopts={'columns':['date','ticker','adj_close']}, date={'gte':'2011-1-1','lte':'2021-07-31'},paginate=True) clean=data.set_index('date') table=clean.pivot(columns='ticker') returns_daily=table.pct_change() returns_annual=returns_daily.mean()*250 cov_daily=returns_daily.cov() cov_annual=cov_daily*250 port_returns=[] port_volatility=[] sharpe_ratio=[] stock_weights=[] num_assets=len(selected) num_portfolios=90000 np.random.seed(101) for single_portfolio in range(num_portfolios): weights=np.random.random(num_assets) weights/=np.sum(weights) returns=np.dot(weights,returns_annual) volatility=np.sqrt(np.dot(weights.T,np.dot(cov_annual,weights))) sharpe=returns/volatility sharpe_ratio.append(sharpe) port_returns.append(returns) port_volatility.append(volatility) stock_weights.append(weights) 合約量化的因素有那些呢? 應該具備如下要素: 1,大數據 2,算法模型 3,入場(chǎng)擇時(shí) 4,倉位管理 5,風(fēng)險控制 6,檢驗策略,策略的歷史數據回測等數據進(jìn)行檢驗 合約量化策略類(lèi)型及玩法詳細講解 交易類(lèi)型分為兩類(lèi),開(kāi)倉和平倉。開(kāi)倉和平倉,又分買(mǎi)入和賣(mài)出兩個(gè)方向: 買(mǎi)入開(kāi)多(看漲)是指當用戶(hù)對指數看多、看漲時(shí),新買(mǎi)入一定數量的某種合約。進(jìn)行“買(mǎi)入開(kāi)多”操作,撮合成功后將增加多頭倉位。 賣(mài)出平多(多單平倉)是指用戶(hù)對未來(lái)指數行情不再看漲而補回的賣(mài)出合約,與當前持有的買(mǎi)入合約對沖抵消退出市場(chǎng)。進(jìn)行“賣(mài)出平多”操作,撮合成功后將減少多頭倉位。 賣(mài)出開(kāi)空(看跌)是指當用戶(hù)對指數看空、看跌時(shí),新賣(mài)出一定數量的某種合約。進(jìn)行“賣(mài)出開(kāi)空”操作,撮合成功后將增加空頭倉位。 買(mǎi)入平空(空單平倉)是指用戶(hù)對未來(lái)指數行情不再看跌而補回的買(mǎi)入合約,與當前持有的賣(mài)出合約對沖抵消退出市場(chǎng)。
|