摘要: 低功耗藍牙(BLE)被廣泛運用于那些需要采集數據并將它們傳送至指定目的地的低功耗無(wú)線(xiàn)通信應用。在這些應用中,各類(lèi)傳感器需要由某種形式的能源供電,以采集數據,并通過(guò)BLE發(fā)送。使用有線(xiàn)電源為這些傳感器供電一般不具可行性,例如有時(shí)候有些傳感器是位于人體上的。電池供電型傳感器受電池壽命的限制,需要頻繁充電。如果某位工程師真正需要設計一款安裝后就無(wú)需打理的BLE傳感器應用,該系統就需要利用光、運動(dòng)、壓力或熱量等周?chē)h(huán)境中未被利用的能量。 這就是能量采集技術(shù)的用武之地。能量采集是一種從外部能源采集能量并用它為嵌入式設備供電的新方法。但是,在能夠可靠地運用基于能量采集技術(shù)的BLE傳感器節點(diǎn)之前,我們需要克服一些挑戰,尤其是在低功耗系統設計中。本文將闡述其中的某些挑戰以及應對方法。 正文: 智能手機等設備給我們的日常生活帶來(lái)了許多重要改變。我們通過(guò)手機來(lái)獲取能夠直接實(shí)時(shí)地影響我們的生活、與我們的健康、環(huán)境甚至購物方式相關(guān)的信息。然而,大多數信息必需被“拉”出來(lái),即通過(guò)一條與另一個(gè)設備的連接獲取它們,或者通過(guò)搜索網(wǎng)絡(luò )獲取它們。這些方法要求用戶(hù)在需要數據時(shí)發(fā)起一個(gè)操作。但是用戶(hù)有時(shí)甚至不知道要找什么或到何處去找,比如說(shuō)當他們尋找店內某款產(chǎn)品的售價(jià)時(shí)。 解決辦法就是擁有一個(gè)能夠向用戶(hù)實(shí)時(shí)“推送”消息的系統。由于智能手機是向用戶(hù)推送信息的最佳途徑,該系統應能便捷有效地向其發(fā)送信息。這就是Beacon的用武之地。 在無(wú)線(xiàn)技術(shù)中, Beacon是一個(gè)廣播消息的系統,目的是讓附近的設備接收到這些消息。Beacon能夠輕而易舉地向用戶(hù)設備傳送數據,而且無(wú)需用戶(hù)操作。智能手機等現有設備支持可用于實(shí)現Beacon功能的各種方法。為了確保Beacon得到廣泛運用,其中包括得到主流設備的支持、互操作性、較低的安裝成本和低功耗運行,BLE 將成為Beacon通信的不二選擇。 低功耗藍牙(BLE)被廣泛運用于那些需要在較小范圍傳送數據的低功耗無(wú)線(xiàn)通信應用。無(wú)線(xiàn)傳感器節點(diǎn)(WSN)就是一個(gè)例子。數據被從傳感器讀出,通常被發(fā)送到一部智能手機。這些傳感器節點(diǎn)中的典型應用流程如下圖所示: 圖1 BLE傳感器設備中的典型流程 這些Beacon/傳感器需要由某種能源供電,以保證能夠連續運行和維持整體設備的尺寸。使用無(wú)線(xiàn)電源為這些傳感器供電一般不具可行性,因為這些傳感器要么是位于人體上,要么位于遠端,因此使用線(xiàn)纜供電的設計行不通。電池供電型傳感器存在電池壽命有限、需要頻繁充電、處理時(shí)破壞環(huán)境等問(wèn)題。 如果我們真的想要無(wú)需任何維護的Beacon,我們就需要利用光、運動(dòng)、壓力或熱量等周?chē)h(huán)境中未被利用的能量。這能夠實(shí)現“安裝后即無(wú)需打理”,使Beacon在其整個(gè)生命周期內都能得到供電。 這就是能量采集技術(shù)的用武之地。能量采集是指從周?chē)h(huán)境采集未被利用的能量并進(jìn)行存儲。所存儲的能量用于為WSN設備供電,采集傳感器數據,并通過(guò)BLE傳輸數據。 圖2 基于能量采集技術(shù)的WSN設備的框圖 能量采集系統(EHS)是一個(gè)電路,其中包括一個(gè)能量采集器件(EHD),一個(gè)能量采集PMIC和一個(gè)儲能器件。 EH PMIC使用EHD(如太陽(yáng)能電池、振動(dòng)傳感器和壓電器件)提供的能量對儲能器件(通常是一個(gè)電容器)進(jìn)行“涓流”充電。EHS然后使用所存儲的電荷向另一個(gè)嵌入式設備提供能量。EHS的輸出功率隨WSN的狀態(tài)變化而改變。當WSN處于活動(dòng)狀態(tài)時(shí),能量被消耗,EHS的輸出電壓開(kāi)始下降。當其處于低功耗狀態(tài)時(shí),由于儲能器件得到充電,EHS的輸出電壓開(kāi)始升高。下圖顯示了EHS的輸出電壓隨嵌入式設備的狀態(tài)變化而改變的過(guò)程。 圖3 EH的輸出電壓隨設備狀態(tài)變化而改變 對于EHS供電型設備,活動(dòng)狀態(tài)下所消耗的能量不應超過(guò)EHS中的可用能量。圖4顯示了一個(gè)EHS供電型系統,其活動(dòng)狀態(tài)下的能耗超過(guò)了EHS所能提供的能量。EHS的輸出電壓逐漸下降,直到完全停止輸出。 圖4 WSN因電能不足關(guān)機 這意味著(zhù)嵌入式系統的方方面面都應得到能量?jì)?yōu)化,這樣它才能在EHS的供電下無(wú)縫運行。此類(lèi)系統中有很多子系統,而它們可能非常耗電,需要得到優(yōu)化才能確保它們不會(huì )拉低EH的輸出電壓。功耗優(yōu)化的關(guān)鍵領(lǐng)域包括: 1) CPU的時(shí)鐘頻率: 系統時(shí)鐘頻率決定了例行程序的處理速度以及期間所消耗的能量。時(shí)鐘越快意味著(zhù)處理速度越快,但電流消耗也越高。此外,每個(gè)設備都有最低和最高時(shí)鐘頻率要求,不能超出該要求。 對于基于EHS的設計,可以根據以下兩個(gè)因素選擇一個(gè)優(yōu)化型時(shí)鐘頻率: a) 平均電流消耗 b) 峰值電流消耗 EHS的容量必需兼顧這兩個(gè)因素。平均電流是活動(dòng)狀態(tài)下所需的時(shí)間平均電流,而峰值電流是活動(dòng)狀態(tài)下的瞬時(shí)最大電流要求,通常高于平均電流。有可能發(fā)生以下情況:所需的平均電流在EHS的容量之內,但峰值電流將導致EHS突然耗盡能量,從而導致電壓降至截止電壓以下。請注意,處理時(shí)間是平均電流消耗計算的一部分。 下圖顯示了某個(gè)例行程序在兩個(gè)不同頻率下(第一個(gè)是48 MHz,第二個(gè)是12 MH)的功耗-時(shí)間圖。 圖5 48 MHz頻率下處理某個(gè)例行程序的電流消耗 圖612 MHz頻率下處理某個(gè)例行程序的電流消耗 在本例中,48 MHz頻率下處理的例行程序使用了約300μs的時(shí)間完成,并在此期間消耗了約10 mA的電流。12 MHz頻率下處理的例行程序使用了1.1 ms的時(shí)間完成,并在此期間僅消耗了4mA的電流。此過(guò)程在12 MHz下的平均電流消耗更高,但峰值電流要求卻更低。取決于EHS的容量,我們可以采用一個(gè)較短的48 MHz時(shí)鐘設置,或一個(gè)較長(cháng)的12 MHz時(shí)鐘設置,或結合采用兩者,讓時(shí)鐘頻率在不同的過(guò)程之間來(lái)回切換。在選擇優(yōu)化型系統頻率時(shí),我們應該考慮這種電流分配。 2) 低功耗設備啟動(dòng) 嵌入式設備獲得供電后,它將完成一個(gè)啟動(dòng)程序,然后才能執行應用代碼。一個(gè)典型的啟動(dòng)程序包括: a) 初始化內存 b) 設置中斷向量 c) 配置外設和通用寄存器 d) 初始化外部時(shí)鐘(如果有的話(huà))。 這四個(gè)步驟的每一步都需占用CPU處理時(shí)間才能完成,因此也要消耗能量。所消耗的能量取決于所使用的設備、系統時(shí)鐘頻率、所初始化的內存/寄存器的容量以及設置外部時(shí)鐘所需的時(shí)間。因此,啟動(dòng)過(guò)程將消耗大量電能,必需得到優(yōu)化才能確保不消耗過(guò)多的EH輸出。編寫(xiě)啟動(dòng)代碼時(shí)應考慮以下因素: a) 只初始化那些將被使用的內存和寄存器部分,其它部分維持默認值。 b) 大多數無(wú)線(xiàn)系統需要高精度外部時(shí)鐘。這些外部時(shí)鐘(如外部時(shí)鐘振蕩器和手表晶體振蕩器)在啟動(dòng)后有一個(gè)較長(cháng)的穩定時(shí)間。我們不應讓系統在活動(dòng)狀態(tài)下等待時(shí)鐘穩定下來(lái),而應將其置于低功耗狀態(tài)(睡眠/深度睡眠狀態(tài)),只有在準備使用它時(shí)再喚醒它。我們可以使用一個(gè)內部定時(shí)器來(lái)實(shí)現這個(gè)目的。 3) 低功耗系統啟動(dòng) 一旦設備開(kāi)始執行應用代碼,通常需要啟動(dòng)系統中的各個(gè)外設。這些外設可能位于設備之中,如ADC,也可能位于設備之外,如某個(gè)傳感器。單個(gè)外設的啟動(dòng)時(shí)間可能不長(cháng),但所有外設的總處理時(shí)間可能長(cháng)到足以耗盡EHS中存儲的能量。 我們應該計算指定CPU頻率下的外設啟動(dòng)時(shí)間,然后確定整體啟動(dòng)所有外設所需的能量預算是否可行(較快),或是否需要將啟動(dòng)程序分為多個(gè)階段(較慢)。 4) 分階段應用處理 設備將有不同的應用例行程序,它們需要自己的CPU帶寬。這些例行程序可能是為了配置某個(gè)外設,從傳感器接收數據,執行計算,管理事件或中斷。我們應該確保處理所用能量不超過(guò)EHS的容量。如果超過(guò)了,應將它們分為較小的子例行程序,并分階段管理它們。這可以將EHS上的負荷分成多個(gè)可管理的電流脈沖,從而讓EHS能夠在活動(dòng)的CPU進(jìn)程之間進(jìn)行充電。 此外,在各個(gè)階段之間,應將系統置于低功耗模式,并將一個(gè)計數器或Watchdog計時(shí)器用作喚醒源,作為中斷。由于系統必需在該模式下保持較長(cháng)時(shí)間,期間的電流要求應盡可能低。 5) 無(wú)線(xiàn)傳輸 采集數據后,必需通過(guò)BLE傳輸它們。傳輸可以通過(guò)一條BLE連接或BLE廣播完成,但支持能量采集的Beacon只能采用BLE廣播,這是因為使用一條連接傳輸數據之前,需要消耗大量能量建立該連接。 通常而言,無(wú)線(xiàn)操作,無(wú)論是發(fā)送(Tx)還是接受(Rx),是無(wú)線(xiàn)設備中耗能最多的操作。我們應確保BLE操作是一個(gè)獨立的過(guò)程,只有在EH輸出能夠提供足夠的峰值電流時(shí)才與其它過(guò)程結合在一起。 賽普拉斯的基于電源管理IC(PMIC)的能量采集器為傳感器和網(wǎng)絡(luò )提供一種無(wú)電池技術(shù)。它們精準的輸出功率控制功能和高效的能量采集功能使它們成為小型無(wú)線(xiàn)和Beacon應用的理想選擇。它們既可以獨立用作電源,或與鋰電池等其它電池設備配合使用,用于延長(cháng)設備的工作壽命。一個(gè)EH PMIC可以從一個(gè)低電壓開(kāi)始,適應應用的需求。MB39C831等某些產(chǎn)品具備最大功率點(diǎn)跟蹤(MPPT) 功能。MPPT可讓內置的DC/DC轉換器通過(guò)跟蹤輸入功率控制輸出充電功率,從而最大程度提高功率輸出。MB39C811等PMIC支持雙采集輸入,可以從兩個(gè)不同的源采集能量。S6AE101A等優(yōu)化型PMIC(太陽(yáng)能或光能EHD優(yōu)化型)具備極低的啟動(dòng)和靜態(tài)功耗,可以使用一個(gè)很小的太陽(yáng)能電池。 無(wú)電池式無(wú)線(xiàn)Beacon的另一個(gè)考慮因素是MCU的選擇。被集成為SoC等可編程系統、同時(shí)支持各種低功耗模式的MCU是此類(lèi)應用的理想選擇。賽普拉斯的可編程片上系統(PSoC)可與那些可用于對接傳感器的各類(lèi)外設緊密集成。尤其是PSoC 4 BLE,它包含多個(gè)低功耗外設以及一個(gè)BLE射頻單元和BLE協(xié)議棧,從而提供了一個(gè)真正的單芯片BLE傳感器節點(diǎn)。此外,其對超低功耗模式的支持還能讓系統與能量采集器、紐扣電池等小型電源無(wú)縫配合。實(shí)踐證明,這些能量采集器外加PSoC是無(wú)電池型BLE傳感器節點(diǎn)應用的最佳設計。 有關(guān)PSoC 4 BLE的更多信息,請參閱應用筆記AN91267 ,您還可以參閱應用筆記AN92584,詳細了解如何進(jìn)一步優(yōu)化BLE系統的功耗。請點(diǎn)擊此處,詳細了解賽普拉斯的PMIC解決方案以及它們的最新特性。 附錄 A1:EH供電型BLE傳感器節點(diǎn)中各個(gè)過(guò)程的示波器屏幕截圖 1) EHS的輸出電壓隨CPU 活動(dòng)的變化。黃色信號是EHS的輸出電壓,綠色信號是嵌入式設備消耗的電流。綠色峰值是CPU活動(dòng)期間的電流消耗,平直信號是設備處于低功耗模式時(shí)的電流消耗。 請注意,由于能量被消耗,EHS的輸出電壓在每次CPU活動(dòng)時(shí)(綠色峰值信號)都會(huì )下降。另請注意,低功耗狀態(tài)期間電壓會(huì )恢復,這是因為EHS對儲能器件進(jìn)行了充電。 2) EHS內部不對儲能器件進(jìn)行充電時(shí),EHS的輸出電壓隨CPU 活動(dòng)的變化。請注意,由于能量被耗盡,電壓降至截止電壓以下, EHS輸出此時(shí)會(huì )被關(guān)閉。 3) 設備啟動(dòng)時(shí)的電流消耗(綠色信號)。 4) EH供電型Beacon的BLE(TX)活動(dòng) |