通信系統中超高效率Buck變換器設計考慮

發(fā)布時(shí)間:2009-5-2 11:23    發(fā)布者:賈延安
關(guān)鍵詞: Buck , 變換器 , 通信系統
本文介紹了在通信系統中,同步Buck變換器上部功率MOSFET和下部功率MOSFET的工作特點(diǎn),同時(shí)討論了在設計高效率的同步Buck變換器時(shí),選取上部和下部功率MOSFET原則;介紹了一種新型的采用柵極屏蔽的功率MOSFET,極低的漏柵極米勒電容適合于上部功率MOSFET的應用;還介紹了一種適合于下部功率MOSFET應用的具有超低導通電阻的功率MOSFET,兩者的配合實(shí)現超高的變換效率
目前,通信系統要求越來(lái)越快的處理速度。其內部專(zhuān)用集成芯片,處理器單元等電路所消耗的電流也越來(lái)越大;同時(shí),為了減小系統的體積和尺寸,內部的低壓大電流的DC/DC變換器不斷向高頻、高密度方向發(fā)展。頻率的提高帶來(lái)系統變換效率的降低,另外,由于世界范圍能源危機和環(huán)境污染提出了對節能減排的要求,因此,基于高頻的變換器必須采用新型的器件,從而可以保證系統既工作在高頻狀態(tài)下,實(shí)現小尺寸、小體積,又整體的提高系統的效率,實(shí)現節能減排的目的。效率的整體提高進(jìn)一步降低了電源系統的發(fā)熱量,提高系統的可靠性。通信系統內部的系統板上使用了大量的Buck變換器,本文將針對這種變換器進(jìn)行詳細的討論。
Buck變換器工作特點(diǎn)

在通信系統的系統板上,通常前級是從-48V通過(guò)隔離電源或電源模塊得到12V或24V輸出,也有采用3.3V或5V的輸出,目前基于A(yíng)TCA的通信系統大多采用12V的中間母線(xiàn)架構,然后再由Buck變換器將12V向下轉換為3.3V、5V、2.5V、1.8V、1.25V等多種不同的電壓。常規的Buck變換器續流管采用肖特基二級管,而同步的Buck變換器下部的續流管卻使用功率MOSFET,由于功率MOSFET的導通電阻小,導通也遠遠低于肖特基二級管的正向壓降,因此效率更高。因此,對于低壓大電流的輸出,通常采用同步的Buck變換器得到較高的效率。

對于Buck變換器,有以下的公式
其中,Don為占空比。當輸入電壓較高時(shí),占空比就小。因此,對于高的輸入電壓,而輸出電壓較低,即輸入輸出的電壓差較大時(shí),在一個(gè)開(kāi)關(guān)周期,上部主功率開(kāi)關(guān)管導通的時(shí)間將減小,而下部續流開(kāi)關(guān)管導通的時(shí)間將自延長(cháng)。圖1為上部MOSFET管和下部MOSFET管的工作波形,陰影為產(chǎn)生開(kāi)關(guān)損耗的部分。




(a)上管的開(kāi)關(guān)波形



(b)下管的開(kāi)關(guān)波形


圖1 Buck變換器MOSFET管的工作波形


上部MOSFET管在開(kāi)關(guān)的瞬態(tài)過(guò)程中,產(chǎn)生明顯的開(kāi)關(guān)損耗,同時(shí)也存在因為MOSFET導通電阻Rds(on)產(chǎn)生的導通損耗。導通平均損耗與占空比和導通電阻Rds(on)成正比,對于基于A(yíng)TCA的通信系統。輸入電壓為12V,輸入輸出的電壓差大,占空比小,因此導通損耗相對較小,而開(kāi)關(guān)損耗占較大的比例。開(kāi)關(guān)損耗主要與開(kāi)關(guān)頻率及MOSFET在開(kāi)關(guān)過(guò)程中持續的時(shí)間成正比。開(kāi)關(guān)持續的時(shí)間與MOSFET的漏柵極的米勒電容直接相關(guān)。米勒電容小,開(kāi)關(guān)持續的時(shí)間短,因此開(kāi)關(guān)損耗降低。因此對于上部MOSFET管的功率損耗必須同時(shí)考慮到開(kāi)關(guān)損耗和導通損耗。對于MOSFET,通常為了降低導通電阻Rds(on),就要采用更大面積的晶圓,這樣就可以得到更多的小單元,多個(gè)小單元并聯(lián)后總的導通電阻Rds(on)就降低,但同時(shí)也會(huì )增加漏極和柵極的相對面積,也就增大了漏極和柵極米勒電容。

從波形可以看到,對于下部MOSFET管在開(kāi)關(guān)的瞬態(tài)過(guò)程中,沒(méi)有產(chǎn)生明顯的開(kāi)關(guān)損耗。通常MOSFET的關(guān)斷是一個(gè)自然的0電壓的關(guān)斷,因為在MOSFET的漏極和源極有一個(gè)寄生的電容,由于電容的電壓不能突變,因此在關(guān)斷的瞬態(tài)過(guò)程中,漏極和源極電壓幾乎為0,這樣,在關(guān)斷的過(guò)程中,電壓與電流的乘積也就是關(guān)斷的功耗為0。所以對于MOSFET,要想實(shí)現0電壓的開(kāi)關(guān)ZVS,關(guān)鍵要實(shí)現其0電壓開(kāi)通。

通常同步的Buck變換器為了防止上下管的直通,上下管有一個(gè)死區的時(shí)間,在死區的時(shí)間內,上下管均保證關(guān)斷。那么在上管關(guān)斷后,由于輸出電感的電流不能突變,必須維持原來(lái)的方向流動(dòng),因此下部功率MOSFET內部寄生二極管導通,寄生二極管導通后下部MOSFET的漏極和源極的電壓為二極管的正向壓降,幾乎為0,所以在寄生二極管導通后,MOSFET再導通,其導通是0電壓的導通,開(kāi)通損耗幾乎為0。這樣下管是一個(gè)0電壓的開(kāi)關(guān),開(kāi)關(guān)損耗幾乎為0。因此在下管中,主要是由導通電阻Rds(on)形成的導通損耗。下管的選取主要考慮盡量用低的導通電阻Rds(on)。

此外,為了減小在死區時(shí)間內由于體內寄生二極管產(chǎn)生的正向壓降功耗和反向恢復帶來(lái)的功耗,通常會(huì )并聯(lián)一個(gè)正向壓降低、反向恢復時(shí)間短的肖特基二極管。過(guò)去主要是下管MOSFET的外部并聯(lián)一個(gè)肖特基二極管,現在通常將肖特基二極管集成在下部MOSFET管內部。起初,是將一個(gè)單獨的肖特基二極管和一個(gè)MOSFET封裝在一起,后來(lái)是將它們做在一個(gè)晶圓上。將一個(gè)晶圓分成兩個(gè)區,一個(gè)區做MOSFET,一個(gè)區做肖特基二極管。

由于二極管具有負溫度系數,并聯(lián)工作不太容易,在一個(gè)晶圓上分成兩個(gè)區做MOSFET和肖特基二極管,那么肖特基二極管在與MOSFET交界的區域,溫度高,離MOSFET較遠的區域,溫度低。當肖特基二極管溫度高時(shí),流過(guò)更大的電流,所以與MOSFET交界的肖特基二極管區域由于溫度高,流過(guò)的電流更大,溫度進(jìn)一步上升,就可能產(chǎn)生局部的損壞。目前,通常將特基二極管的單元做到MOSFET的單元里面,這樣就可能得到更好的熱平衡,提高器件的可靠性。
適用于上管的SGT新型功率MOSFET

通常,對于MOSFET,導通電阻Rds(on)和漏極柵極的米勒電容是一個(gè)相互矛盾的參數,除非采用新的技術(shù),才能解決這個(gè)問(wèn)題。對于同樣面積的晶圓,如果要減小米勒電容,就必須想方法減小漏極和柵極相對接觸的面積,最為直觀(guān)的方法就是對柵極采用一定的屏蔽技術(shù),從而減小漏極和柵極的相對電容。圖2就是采用AOS的專(zhuān)利技術(shù)SGT所制作的新型的具有極低漏極柵極米勒電容的功率MOSFET。

注意到圖2中,除了柵極結構,其他的部分就是標準的采用Trench工藝的MOSFET。柵極被分割成上下兩個(gè)部分,下部分用一些特殊的材料屏蔽起來(lái),下部分在內部和上部分的柵極相連,而柵極的屏蔽層被連接到源極,從而減小漏極柵極米勒電容。用這種技術(shù)設計的MOSFET如AOL1464,其Vds為30V,Vgs在10V條件下Rds(on)為6.2mΩ,而其Crss只有20pF,極大地減小了開(kāi)關(guān)過(guò)程中米勒平臺的持續的時(shí)間,降低了開(kāi)關(guān)損耗。AOL1430,其Vds為30V,Vgs在10V條件下Rds(on)為2.5mΩ,而其Crss為50pF。圖3中,下管采用AOS的AOL1428,上管采用AOL1430和其他廠(chǎng)家目前Crss最低的器件的效率曲線(xiàn),可見(jiàn),上管采用AOL1430具有非常高的效率。注意:輸入電壓12V,輸出電壓    1.7V,開(kāi)關(guān)頻率300kHz。




圖2 采用SGT新型功率MOSFET結構



圖3 SGT功率MOSFET效率


適用于下管的超低Rds(on)功率MOSFET

下管主要是導通損耗,因此要盡量使用導通電阻Rds(on)低的功率MOSFET。目前,主要通過(guò)改進(jìn)工藝和使用新的材料,在同樣面積的晶圓上,降低每個(gè)單元的電阻,同時(shí)盡可能的設計出更多的單元,提高單元的密度,以形成低的導通電阻Rds(on)。

圖4中,每個(gè)MOSFET單元,在相同額定的Vds電壓條件下,導通電阻相同,其具有更高的單元密度,在水平和垂直兩個(gè)方向都盡可能縮小了尺寸。AOS的AON6702采用DFN的封裝,其Vds為30V,Vgs在10V條件下Rds(on)為1.9mΩ,同時(shí)內部集成的具有優(yōu)異特性的肖特基二極管。




(a)原來(lái)的單元結構




(b)新的單元結構


圖4 高密度的MOSFET單元結構

結論

(1)同步Buck變換器的上管同時(shí)具有開(kāi)關(guān)損耗和導通損耗,在輸入輸出壓差大的應用中,開(kāi)關(guān)損耗為主。導通損耗與MOSFET的導通電阻Rds(on)成正比,開(kāi)關(guān)損耗與漏極柵極米勒電容相關(guān)。

(2)采用SGT技術(shù)的功率MOSFET具有超低的漏極柵極米勒電容,從而減小了開(kāi)關(guān)過(guò)程中米勒平臺的持續的時(shí)間,降低了開(kāi)關(guān)損耗。

(3)同步Buck變換器的下管只有導通損耗,開(kāi)關(guān)損耗幾乎為0。要選取 Rds(on)盡量小的MOSFET。使用新工藝和新材料,可以提高晶圓上單元的晶胞密度,降低單元的電阻密度。
本文地址:http://selenalain.com/thread-2657-1-1.html     【打印本頁(yè)】

本站部分文章為轉載或網(wǎng)友發(fā)布,目的在于傳遞和分享信息,并不代表本網(wǎng)贊同其觀(guān)點(diǎn)和對其真實(shí)性負責;文章版權歸原作者及原出處所有,如涉及作品內容、版權和其它問(wèn)題,我們將根據著(zhù)作權人的要求,第一時(shí)間更正或刪除。
您需要登錄后才可以發(fā)表評論 登錄 | 立即注冊

相關(guān)視頻

關(guān)于我們  -  服務(wù)條款  -  使用指南  -  站點(diǎn)地圖  -  友情鏈接  -  聯(lián)系我們
電子工程網(wǎng) © 版權所有   京ICP備16069177號 | 京公網(wǎng)安備11010502021702
快速回復 返回頂部 返回列表
午夜高清国产拍精品福利|亚洲色精品88色婷婷七月丁香|91久久精品无码一区|99久久国语露脸精品|动漫卡通亚洲综合专区48页