IC Integration Enables Flat-Panel Phased Array Antenna Design 作者:ADI公司 Jeff Lane,產(chǎn)品營(yíng)銷(xiāo)工程師 摘要 半導體技術(shù)的進(jìn)步推動(dòng)了相控陣天線(xiàn)在整個(gè)行業(yè)的普及。早在幾年前,軍事應用中已經(jīng)開(kāi)始出現從機械轉向天線(xiàn)到有源電子掃描天線(xiàn)(AESA)的轉變,但直到最近,才在衛星通信和5G通信中取得快速發(fā)展。小型AESA具有多項優(yōu)勢,包括能夠快速轉向、生成多種輻射模式、具備更高的可靠性;但是,在IC技術(shù)取得重大進(jìn)展之前,這些天線(xiàn)都無(wú)法廣泛使用。平面相控陣需要采用高度集成、低功耗、高效率的設備,以便用戶(hù)將這些組件安裝在天線(xiàn)陣列之后,同時(shí)將發(fā)熱保持在可接受的水平。本文將簡(jiǎn)要描述相控陣芯片組的發(fā)展如何推動(dòng)平面相控陣天線(xiàn)的實(shí)現,并采用示例輔助解釋和說(shuō)明。 簡(jiǎn)介 在過(guò)去幾年里,我們在非常重視方向性的場(chǎng)合廣泛使用拋物線(xiàn)碟形天線(xiàn)來(lái)發(fā)射和接收信號。其中許多系統表現出色,在經(jīng)過(guò)多年優(yōu)化之后保持了相對較低的成本。但這些機械轉向碟形天線(xiàn)存在一些缺點(diǎn)。它們體積龐大,操作緩慢,長(cháng)期可靠性較差,而且只能提供一種所需的輻射模式或數據流。 相控陣天線(xiàn)采用電信號轉向機制,具有諸多優(yōu)點(diǎn),例如高度低,體積小、更好的長(cháng)期可靠性、快速轉向、多波束等。相控陣天線(xiàn)設計的一個(gè)關(guān)鍵方面是天線(xiàn)元件的間隔。大部分陣列都需要大約半個(gè)波長(cháng)的元件間隔,因此在更高頻率下需要更復雜的設計,由此推動(dòng)IC在更高頻率下,實(shí)現更高程度的集成,越加先進(jìn)的封裝解決方案。 人們對將相控陣天線(xiàn)技術(shù)應用于各種應用領(lǐng)域產(chǎn)生了濃厚的興趣。但是,受限于目前可用的IC,工程師無(wú)法讓相控陣天線(xiàn)成為現實(shí)。近期開(kāi)發(fā)的IC芯片組成功解決了這一問(wèn)題。半導體技術(shù)正朝著(zhù)先進(jìn)的硅IC方向發(fā)展,這讓我們可以將數字控制、存儲器和RF晶體管組合到同一個(gè)IC中。此外,氮化鎵(GaN)顯著(zhù)提高了功率放大器的功率密度,可以幫助大幅減小占位面積。 相控陣技術(shù) 在行業(yè)向體積和重量更小的小型陣列轉變期間,IC起到了重大的推動(dòng)作用。傳統的電路板結構基本使用小型PCB板,其上的電子元件垂直饋入天線(xiàn)PCB的背面。在過(guò)去的20年中,這種方法不斷改進(jìn),以持續減小電路板的尺寸,從而減小天線(xiàn)的深度。下一代設計從這種板結構轉向平板式方法,平板設計大大減小了天線(xiàn)的深度,使它們能更容易地裝入便攜應用或機載應用當中。要實(shí)現更小的尺寸,需要每個(gè)IC足夠程度的集成,以便將它們裝入天線(xiàn)背面。 在平面陣列設計中,天線(xiàn)背面可用于IC的空間受到天線(xiàn)元件間距的限制。舉例來(lái)說(shuō),在高達60°的掃描角度下,要防止出現光柵波瓣,最大天線(xiàn)元件間隔需要達到0.54 λ。圖1顯示了最大元件間距(英寸)和頻率的關(guān)系。隨著(zhù)頻率提高,元件之間的間隔變得非常小,由此擠占了天線(xiàn)背后組件所需的空間。 ![]() 圖1.阻止在偏離瞄準線(xiàn)60°時(shí)產(chǎn)生光柵波瓣的天線(xiàn)元件間隔 在圖2中,左圖展示了PCB頂部的金色貼片天線(xiàn)元件,右圖顯示了PCB底部的天線(xiàn)模擬前端。在這些設計中,在其他層上部署變頻級和分配網(wǎng)絡(luò )也是非常典型的。很明顯可以看出,采用更多集成IC可以大幅降低在所需空間內部署天線(xiàn)設計的難度。在我們將更多電子元件封裝到更小尺寸內,使得天線(xiàn)尺寸減小之后,我們需要采用新的半導體和封裝技術(shù),讓解決方案變得可行。 ![]() 圖2.平面陣列,圖中所示為PCB頂部的天線(xiàn)貼片,IC則位于天線(xiàn)PCB的背面 半導體技術(shù)和封裝 圖3中顯示了作為相控陣天線(xiàn)構建模塊的微波和毫米波(mmW) IC組件。在波束成型部分,衰減器調整每個(gè)天線(xiàn)元件的功率電平,以減少天線(xiàn)方向圖中的柵瓣。移相器調整每個(gè)天線(xiàn)元件的相位以引導天線(xiàn)主波束,并且使用開(kāi)關(guān)在發(fā)射器和接收器路徑之間切換。在前端IC部分,使用功率放大器來(lái)發(fā)射信號,使用低噪聲放大器來(lái)接收信號,最后,使用另一個(gè)開(kāi)關(guān)在發(fā)射器和接收器之間進(jìn)行切換。在過(guò)去的配置中,每個(gè)IC都作為獨立的封裝器件提供。更先進(jìn)的解決方案使用集成單芯片單通道砷化鎵(GaAs) IC來(lái)實(shí)現這一功能。對于大部分陣列,在波束成型器之前都配有無(wú)源RF組合器網(wǎng)絡(luò )、接收器/激勵器和信號處理器,這一點(diǎn)圖中未顯示。 ![]() 圖3.相控陣天線(xiàn)的典型RF前端。 相控陣天線(xiàn)技術(shù)近年來(lái)的普及離不開(kāi)半導體技術(shù)發(fā)展的推動(dòng)。SiGe BiCMOS、絕緣體上硅(SOI)和體CMOS中的高級節點(diǎn)將數字和RF電路合并到一起。這些IC可以執行陣列中的數字任務(wù),以及控制RF信號路徑,以實(shí)現所需的相位和幅度調整。如今,我們已經(jīng)可以實(shí)現多通道波束成型IC,此類(lèi)IC可在4通道配置中調整增益和相位,最多可支持32個(gè)通道,可用于毫米波設計。在一些低功耗示例中,基于硅的IC有可能為上述所有功能提供單芯片解決方案。在高功率應用中,基于氮化鎵的功率放大器顯著(zhù)提高了功率密度,可以安裝到相控陣天線(xiàn)的單元構件中。這些放大器傳統上一般使用基于行波管(TWT)的技術(shù)或基于相對低功耗的GaAs的IC。 在機載應用中,我們看到了平板架構日益盛行的趨勢,因為其同時(shí)具有GaN技術(shù)的功率附加效率(PAE)優(yōu)勢。GaN還使大型地基雷達能夠從由TWT驅動(dòng)的碟形天線(xiàn)轉向由固態(tài)GaN IC驅動(dòng)、基于相控陣的天線(xiàn)技術(shù)。我們目前能使用單芯片GaN IC,這類(lèi)IC能提供超過(guò)100 W的功率,PAE超過(guò)50%。將這種效率水平與雷達應用的低占空比相結合,可以實(shí)現表貼解決方案,以散除外殼基座中產(chǎn)生的熱量。這些表貼式功率放大器大大減小了天線(xiàn)陣列的尺寸、重量和成本。在GaN的純功率能力以外,與現有GaAs IC解決方案相比的額外好處是尺寸減小了。舉例來(lái)說(shuō),相比基于GaAs的放大器,X波段上6 W至8 W的基于GaN的功率放大器占位面積可減少50%或以上。在將這些電子器件裝配到相控陣天線(xiàn)的單元構件中時(shí),這種占位面積的減小有著(zhù)顯著(zhù)的意義。 封裝技術(shù)的發(fā)展也大大降低了平面天線(xiàn)架構的成本。高可靠性設計可能使用鍍金氣密外殼,芯片和線(xiàn)纜在其內部互連。這些外殼在極端環(huán)境下更堅固,但體積大,且成本高昂。多芯片模塊(MCM)將多個(gè)MMIC器件和無(wú)源器件集成到成本相對較低的表貼封裝中。MCM仍然允許混合使用半導體技術(shù),以便最大化每個(gè)器件的性能,同時(shí)大幅節省空間。例如,前端IC中可能包含PA、LNA和T/R開(kāi)關(guān)。封裝基座中的熱通孔或固體銅廢料被用于散熱。為了節省成本,許多商業(yè)、軍事和航空航天應用都開(kāi)始使用成本更低的表貼封裝選項。 相控陣波束成型IC 集成式模擬波束成型IC一般被稱(chēng)為核心芯片,旨在為包括雷達、衛星通信和5G通信在內的廣泛應用提供支持。這些芯片的主要功能是準確設置每個(gè)通道的相對增益和相位,以在天線(xiàn)主波束所需的方向增加信號。該波束成型IC專(zhuān)為模擬相控陣應用或混合陣列架構而開(kāi)發(fā),混合陣列架構將一些數字波束成型技術(shù)與模擬波束成型技術(shù)結合起來(lái)。 ADAR1000 X-/Ku波段波束成型IC是一款4通道器件,覆蓋頻段為8 GHz至16 GHz,采用時(shí)分雙工(TDD)模式,其發(fā)射器和接收器集成在一個(gè)IC當中。在接收模式下,輸入信號通過(guò)四個(gè)接收通道并組合在通用RF_IO引腳中。在發(fā)射模式下,RF_IO輸入信號被分解并通過(guò)四個(gè)發(fā)射通道。功能框圖如圖4所示。 簡(jiǎn)單的4線(xiàn)式串行端口接口(SPI)可以控制所有片內寄存器。兩個(gè)地址引腳可對同一串行線(xiàn)纜上的最多四個(gè)器件進(jìn)行SPI控制。專(zhuān)用發(fā)射和接收引腳可同步同一陣列中的所有內核芯片,且單引腳可控制發(fā)射和接收模式之間的快速切換。這款4通道IC采用7 mm×7 mm QFN表貼封裝,可輕松集成到平板陣列當中。高度集成,再加上小型封裝,可以解決通道數量較多的相控陣架構中一些尺寸、重量和功率挑戰。此器件在發(fā)射模式下功耗僅為240 mW/通道,在接收模式下功耗僅為160 mW/通道。 發(fā)射和接收通道直接可用,在外部設計上可以與前端IC配合使用。圖5顯示了器件的增益和相位圖。具有全360°相位覆蓋,可以實(shí)現小于2.8°的相位步長(cháng)和優(yōu)于30 dB的增益調整。ADAR1000集成片上存儲器,可存儲多達121個(gè)波束狀態(tài),其中一個(gè)狀態(tài)包含整個(gè)IC的所有相位和增益設置。發(fā)射器提供大約19 dB的增益和15 dBm的飽和功率,其中接收增益約為14 dB。另一個(gè)關(guān)鍵指標是增益設置內的相位變化,在20 dB范圍內約為3°。同樣,在整個(gè)360°相位覆蓋范圍內,相位的增益變化約為0.25 dB,緩解了校準難題。 ![]() 圖4.ADAR1000功能框圖 ![]() 圖5.ADAR1000發(fā)射增益/回波損耗和相位/增益控制,其中頻率 = 11.5 GHz 前端IC ADTR1107是ADAR1000波束成型芯片的補充。ADTR1107是一款緊湊型的6 GHz至18 GHz前端IC,包含集成式功率放大器、低噪聲放大器(LNA),以及一個(gè)反射性的單刀雙擲(SPDT)開(kāi)關(guān)。功能框圖如圖6所示。 ![]() 圖6.ADTR1107功能框圖 這款前端IC在發(fā)射狀態(tài)下提供25 dBm飽和輸出功率(PSAT)和22 dB小信號增益,在接收狀態(tài)下提供18 dB小信號增益和2.5 dB噪聲系數(包括T/R開(kāi)關(guān))。該器件配有雙向耦合器,用于檢測功率。輸入/輸出(I/O)內部匹配至50 Ω。ADTR1107采用5 mm × 5 mm、24引腳基板柵格陣列(LGA)封裝。ADTR1107的發(fā)射和接收增益及回波損耗如圖7所示。 ![]() 圖7.ADTR1107的發(fā)射增益/回波損耗和接收增益/回波損耗 ADTR1107專(zhuān)用于和ADAR1000輕松集成。接口原理圖見(jiàn)圖8。四個(gè)ADTR1107 IC由一個(gè)ADAR1000內核芯片驅動(dòng)。出于簡(jiǎn)單考慮,圖上只顯示其中一個(gè)ADTR1107 IC的連接。 ADAR1000提供所需的所有柵級偏置和控制信號,使其與前端IC無(wú)縫連接。雖然ADTR1107 LNA柵級電壓自偏置,我們也可以從ADAR1000控制電壓。ADTR1107功率放大器的柵級電壓也由ADAR1000提供。由于1個(gè)ADAR1000驅動(dòng)4個(gè)ADTR1107,所以偏置功率放大器電壓需要4個(gè)獨立的負極柵級電壓。每個(gè)電壓都由一個(gè)8位數模轉換器(DAC)設置。此電壓可由ADAR1000 TR輸入或串行外設接口寫(xiě)入置位。置位ADAR1000 TR引腳會(huì )在接收和發(fā)射模式之間切換ADAR1000的極性。TR_SW_POS引腳可以驅動(dòng)多達4個(gè)開(kāi)關(guān)的柵級,且可用于控制ADTR1107 SPDT開(kāi)關(guān)。 ADTR1107 CPLR_OUT耦合器輸出可以與4個(gè)ADAR1000 RF檢波器輸入(圖4中的DET1至DET4)中的一個(gè)回連,以測量發(fā)射輸出功率。這些基于二極管的RF檢波器的輸入范圍為−20 dBm至+10 dBm。ADTR1107定向耦合器的耦合系數從6 GHz時(shí)的28 dB到18 GHz時(shí)的18 dB。 可以通過(guò)ADAR1000驅動(dòng)的柵級電壓實(shí)現ADTR1107脈沖,同時(shí)保持漏極恒定。相比通過(guò)漏極脈沖,這種方法更優(yōu)化,因為這會(huì )用到高功率MOSFET開(kāi)關(guān)和柵級驅動(dòng)器器件與柵級開(kāi)關(guān),后者采用低電流。還應注意,在發(fā)射模式下ADAR1000提供足夠功率會(huì )令ADTR1107飽和,在天線(xiàn)短路時(shí)ADTR1107可以承受總反射功率。 在發(fā)射和接收模式下,ADTR1107和ADAR1000在8 GHz至16 GHz頻率范圍內的組合性能如圖9所示。在發(fā)射模式下,它們提供約40 dB增益和26 dBm飽和功率,在接收模式下,則提供約2.9 dB噪聲系數和25 dB增益。 圖10所示為4個(gè)ADAR1000芯片驅動(dòng)16個(gè)ADTR1107芯片。簡(jiǎn)單的四線(xiàn)式SPI控制所有片內寄存器。兩個(gè)地址引腳可對同一串行線(xiàn)纜上的最多四個(gè)ADAR1000芯片進(jìn)行SPI控制。專(zhuān)用發(fā)射和接收負載引腳也可同步同一陣列中的所有內核芯片,且單引腳可控制發(fā)射和接收模式之間的快速切換。 ![]() 圖8.將ADTR1107前端IC與ADAR1000 X波段和Ku波段波束成型器連接 ![]() 圖9.與ADAR1000(單通道)耦合的ADTR1107的發(fā)射和接收性能 ![]() 圖10.4個(gè)ADAR1000芯片驅動(dòng)16個(gè)ADTR1107芯片 ![]() 圖11.訪(fǎng)問(wèn)analog.com/phasedarray,了解有關(guān)ADI相控陣產(chǎn)品的更多信息 收發(fā)器芯片組和其他配套產(chǎn)品 高度集成的射頻收發(fā)器芯片可以提升天線(xiàn)層面的集成。ADRV9009就是這種芯片一個(gè)很好的例子。它提供雙發(fā)射器和接收器、集成式頻率合成器和數字信號處理功能。該器件采用先進(jìn)的直接轉換接收器,具有高動(dòng)態(tài)范圍、寬帶寬、錯誤校準和數字濾波功能。還集成了多種輔助功能,比如模數轉換器(ADC)和數模轉換器(DAC),以及用于功率放大器的通用輸入/輸出以及RF前端控制。高性能鎖相環(huán)可同時(shí)針對發(fā)射器和接收器信號路徑提供小數N分頻RF頻率合成。它提供極低功耗和全面的關(guān)斷模式,以在不使用時(shí)進(jìn)一步省電。ADRV9009采用12 mm × 12 mm、196引腳芯片級球柵陣列封裝。 ADI公司為相控陣天線(xiàn)設計提供從天線(xiàn)到位的整個(gè)信號鏈,且針對此應用優(yōu)化IC,以幫助客戶(hù)加快上市時(shí)間。IC技術(shù)的進(jìn)步促使天線(xiàn)技術(shù)發(fā)生轉變,推動(dòng)了多個(gè)行業(yè)的變革。 作者簡(jiǎn)介 Jeff Lane畢業(yè)于麻省理工大學(xué),擁有電子工程碩士學(xué)位,他于2001年加入ADI。他擁有微波天線(xiàn)設計、系統工程、銷(xiāo)售和市場(chǎng)營(yíng)銷(xiāo)等方面的經(jīng)驗。他目前是ADI公司航空航天、國防和RF產(chǎn)品部的產(chǎn)品營(yíng)銷(xiāo)工程師,主要負責RF和微波MMIC放大器相關(guān)的事務(wù)。聯(lián)系方式:jeff.lane@analog.com。 |