來(lái)源:Digi-Key 作者:Art Pini 電子工程師和技術(shù)人員習慣將噪聲視為負面因素,因而在元器件選擇、電路設計和電路板布局過(guò)程中會(huì )進(jìn)行優(yōu)化以實(shí)現低噪聲。事實(shí)上,隨機或偽隨機噪聲有時(shí)候很有用。本文將進(jìn)一步說(shuō)明為什么要利用噪聲以及如何利用。 在各種應用中,常用的隨機噪聲有兩種:白噪聲和粉紅噪聲。白噪聲具有較為平坦的頻譜,其帶寬功率相同(測量單位為 dB)。粉紅噪聲在其帶寬內的每個(gè)頻率倍頻程上具有相同的功率(圖 1)。 ![]() 圖 1:白噪聲和粉紅噪聲的頻譜比較。白噪聲的功率譜平坦,而粉紅噪聲的功率譜每倍頻程下降 3 dB。(圖片來(lái)源:Art Pini) 粉紅噪聲因與人耳的響應相似,因而可用于音頻測試和音響系統均衡。 房間均衡可調整音響系統的頻率響應,以產(chǎn)生與輸入信號完全相同的信號。如果將粉紅噪聲輸入音響系統,均衡器會(huì )按照頻譜分析儀上的測量值進(jìn)行調整后將粉紅噪聲輸出(圖 2)。 ![]() 圖 2:利用均衡器調整房間的頻率響應,可以無(wú)損或無(wú)失真地再現輸入。(圖片來(lái)源:Art Pini) 白噪聲可用于測量頻率響應,并可作為擴頻通信的擴頻源。 下面的示例描述了 10.7 MHz 中頻 (IF) 濾波器的頻率響應(圖 3)。 ![]() 圖 3:利用寬帶白噪聲測量 10.7 MHz IF 濾波器的頻率響應。(圖片來(lái)源:Art Pini) 如左上方網(wǎng)格所示,白噪聲通過(guò)適當的阻抗匹配網(wǎng)絡(luò )饋入濾波器。如左下方網(wǎng)格所示,輸入噪聲的頻譜在整個(gè)目標頻率范圍內是平坦的。正確端接的濾波器輸出如右上方網(wǎng)格所示。該輸出的幅度比輸入小,因為帶通濾波器衰減了濾波器帶寬之外的頻率分量。濾波器輸出的頻譜(如右下方網(wǎng)格所示)顯示,在 10.7 MHz 中心頻率下濾波器的帶寬約為 400 kHz。理論頻率響應是輸出信號與輸入信號的復比。由于輸入信號的幅度均勻,因此輸出頻譜顯示濾波器的幅度頻譜響應。 構建噪聲發(fā)生器 噪聲發(fā)生器可以基于以下三種基本技術(shù)中的任意一種。第一種技術(shù)是使用電阻器中產(chǎn)生的約翰遜噪聲。這種電子噪聲由電導體內部電子的熱擾動(dòng)產(chǎn)生,任何電壓下都會(huì )發(fā)生這種熱擾動(dòng)。所產(chǎn)生的噪聲本質(zhì)上是高斯白噪聲,必須通過(guò)一些超高增益的放大器進(jìn)行緩沖。 第二種技術(shù)是使用反向偏壓的齊納二極管或雪崩擊穿二極管。這種噪聲也是白噪聲,并且噪聲級高于約翰遜噪聲,但仍然需要高增益放大器。 第三種技術(shù)是利用移位寄存器生成偽隨機二進(jìn)制序列 (PRBS),再使用數模轉換器 (DAC) 和濾波器將 PRBS 轉換為白噪聲。PRBS 噪聲流具有有限的重復長(cháng)度。該長(cháng)度可以按移位寄存器的級數來(lái)設置。信號持續時(shí)間的倒數是 PRBS 發(fā)生器可以再現的最低頻率。PRBS 發(fā)生器提供最高輸出電壓,并且不需要高增益放大器。 PRBS 發(fā)生器可利用離散移位寄存器(參見(jiàn)圖 4)或可編程片上系統(例如微控制器或 FPGA)來(lái)實(shí)現。 ![]() 圖 4:利用兩個(gè)離散式八路 D 型觸發(fā)器 IC 實(shí)現 16 位 PRBS 噪聲發(fā)生器。(圖片來(lái)源:Art Pini) PRBS 發(fā)生器(參見(jiàn)圖 4)設計成本低,基于線(xiàn)性反饋移位寄存器實(shí)現,采用 onsemi 的 MC14015DG 雙 4 位靜態(tài)移位寄存器和 Texas Instruments 的 CD4070BMT 四路異或門(mén)。十六路 D 型觸發(fā)器(每個(gè) IC 8 路)在第 14 和 15 路設有反饋抽頭,可產(chǎn)生 PRBS15 數據模式。反饋連接通過(guò)一個(gè)異或門(mén)進(jìn)行。該數據模式長(cháng)度為 32767 位,在 500 kHz 時(shí)鐘速率下持續時(shí)間約 65 毫秒 (ms)。通過(guò)使用更多移位寄存器,并適當改變反饋抽頭,可實(shí)現更長(cháng)的模式。 使用 MC14093BDR2G 施密特觸發(fā)器與非門(mén) (IC5) 和基本的電阻電容 (RC) 網(wǎng)絡(luò ),發(fā)生器在開(kāi)機時(shí)初始化為“全零”狀態(tài)。時(shí)鐘由一個(gè)運行在 500 kHz 附近的簡(jiǎn)單 CMOS 振蕩器提供。數字輸出可以從任何移位寄存器 Q 輸出中獲取。本例中使用的是 Q14。 雖然可以使用模擬濾波器,但會(huì )僅限于特定時(shí)鐘頻率。通過(guò)使用有限脈沖響應 (FIR) 低通數字濾波器,濾波器截止頻率將跟蹤時(shí)鐘頻率的任何變化。此外,FIR 濾波器可以提供非常低的截止頻率,而這對于模擬濾波器而言,需要很大容量的電容器。FIR 濾波器組合了移位寄存器輸出的加權和。在頻域中產(chǎn)生矩形低通濾波器響應所需的加權是時(shí)域中的 sin(x)/x(圖 5)。 ![]() 圖 5:發(fā)生器的輸出級采用來(lái)自移位寄存器輸出的 sin(x)/x 加權樣本,來(lái)實(shí)現 FIR 低通濾波器。(圖片來(lái)源:Art Pini) 加權移位寄存器輸出通過(guò)差分放大器求和,該差分放大器包含 LM324KDR 四通道運算放大器的三個(gè)部分。上電阻器組代表 sin(x)/x 加權的負值。下電阻器組代表正值。該數字濾波器頻帶將輸出限制在 500 kHz 時(shí)鐘頻率的 5% 左右(或 25 kHz),適用于音頻測試目的。 利用一個(gè)簡(jiǎn)單的阻容濾波器,可以將該發(fā)生器的白噪聲輸出轉換為粉紅噪聲(圖 6)。 ![]() 圖 6:這個(gè)簡(jiǎn)單的 RC 濾波器將利用發(fā)生器的數字噪聲輸出產(chǎn)生粉紅噪聲。(圖片來(lái)源:Art Pini) 選擇的放大器要與預期的負載相匹配。這種類(lèi)型的噪聲發(fā)生器適用于音頻測試和均衡。 總結 雖然通常需要消除或至少要減少噪聲,但合適的噪聲可能會(huì )很有用。歸功于噪聲已知的頻譜功率分布,白噪聲和粉紅噪聲是頻率響應測試領(lǐng)域的重要資源。如上所述,使用一些現成的元器件可以快速構建一個(gè)合適的噪聲發(fā)生器。 |