如何創(chuàng )建機器學(xué)習環(huán)境-基于瑞芯微米爾RK3576開(kāi)發(fā)板

發(fā)布時(shí)間:2025-2-8 14:48    發(fā)布者:swiftman
本篇源自:優(yōu)秀創(chuàng )作者 lulugl

本文將介紹基于米爾電子MYD-LR3576開(kāi)發(fā)板(米爾基于瑞芯微 RK3576開(kāi)發(fā)板)的創(chuàng )建機器學(xué)習環(huán)境方案測試。


【前言】
【米爾-瑞芯微RK3576核心板及開(kāi)發(fā)板】具有6TpsNPU以及GPU,因此是學(xué)習機器學(xué)習的好環(huán)境,為此結合《深度學(xué)習的數學(xué)——使用Python語(yǔ)言》
1、使用vscode 連接遠程開(kāi)發(fā)板

2、使用conda新建虛擬環(huán)境:

  1. root@myd-lr3576x-debian:/home/myir/pro_learn# conda create --name myenv python=3.9
復制代碼


執行結果如下:

  1. root@myd-lr3576x-debian:/home/myir/pro_learn# conda create --name myenv python=3.9
  2. Channels:
  3. - defaults
  4. Platform: linux-aarch64
  5. Collecting package metadata (repodata.json): done
  6. Solving environment: done

  7. ## Package Plan ##

  8. environment location: /root/miniconda3/envs/myenv

  9. added / updated specs:
  10. - python=3.9


  11. The following packages will be downloaded:

  12. package | build
  13. ---------------------------|-----------------
  14. _libgcc_mutex-0.1 | main 2 KB defaults
  15. _openmp_mutex-5.1 | 51_gnu 1.4 MB defaults
  16. ca-certificates-2024.11.26 | hd43f75c_0 131 KB defaults
  17. ld_impl_linux-aarch64-2.40 | h48e3ba3_0 848 KB defaults
  18. libffi-3.4.4 | h419075a_1 140 KB defaults
  19. libgcc-ng-11.2.0 | h1234567_1 1.3 MB defaults
  20. libgomp-11.2.0 | h1234567_1 466 KB defaults
  21. libstdcxx-ng-11.2.0 | h1234567_1 779 KB defaults
  22. ncurses-6.4 | h419075a_0 1.1 MB defaults
  23. openssl-3.0.15 | h998d150_0 5.2 MB defaults
  24. pip-24.2 | py39hd43f75c_0 2.2 MB defaults
  25. python-3.9.20 | h4bb2201_1 24.7 MB defaults
  26. readline-8.2 | h998d150_0 381 KB defaults
  27. setuptools-75.1.0 | py39hd43f75c_0 1.6 MB defaults
  28. sqlite-3.45.3 | h998d150_0 1.5 MB defaults
  29. tk-8.6.14 | h987d8db_0 3.5 MB defaults
  30. tzdata-2024b | h04d1e81_0 115 KB defaults
  31. wheel-0.44.0 | py39hd43f75c_0 111 KB defaults
  32. xz-5.4.6 | h998d150_1 662 KB defaults
  33. zlib-1.2.13 | h998d150_1 113 KB defaults
  34. ------------------------------------------------------------
  35. Total: 46.2 MB

  36. The following NEW packages will be INSTALLED:

  37. _libgcc_mutex anaconda/pkgs/main/linux-aarch64::_libgcc_mutex-0.1-main
  38. _openmp_mutex anaconda/pkgs/main/linux-aarch64::_openmp_mutex-5.1-51_gnu
  39. ca-certificates anaconda/pkgs/main/linux-aarch64::ca-certificates-2024.11.26-hd43f75c_0
  40. ld_impl_linux-aar~ anaconda/pkgs/main/linux-aarch64::ld_impl_linux-aarch64-2.40-h48e3ba3_0
  41. libffi anaconda/pkgs/main/linux-aarch64::libffi-3.4.4-h419075a_1
  42. libgcc-ng anaconda/pkgs/main/linux-aarch64::libgcc-ng-11.2.0-h1234567_1
  43. libgomp anaconda/pkgs/main/linux-aarch64::libgomp-11.2.0-h1234567_1
  44. libstdcxx-ng anaconda/pkgs/main/linux-aarch64::libstdcxx-ng-11.2.0-h1234567_1
  45. ncurses anaconda/pkgs/main/linux-aarch64::ncurses-6.4-h419075a_0
  46. openssl anaconda/pkgs/main/linux-aarch64::openssl-3.0.15-h998d150_0
  47. pip anaconda/pkgs/main/linux-aarch64::pip-24.2-py39hd43f75c_0
  48. python anaconda/pkgs/main/linux-aarch64::python-3.9.20-h4bb2201_1
  49. readline anaconda/pkgs/main/linux-aarch64::readline-8.2-h998d150_0
  50. setuptools anaconda/pkgs/main/linux-aarch64::setuptools-75.1.0-py39hd43f75c_0
  51. sqlite anaconda/pkgs/main/linux-aarch64::sqlite-3.45.3-h998d150_0
  52. tk anaconda/pkgs/main/linux-aarch64::tk-8.6.14-h987d8db_0
  53. tzdata anaconda/pkgs/main/noarch::tzdata-2024b-h04d1e81_0
  54. wheel anaconda/pkgs/main/linux-aarch64::wheel-0.44.0-py39hd43f75c_0
  55. xz anaconda/pkgs/main/linux-aarch64::xz-5.4.6-h998d150_1
  56. zlib anaconda/pkgs/main/linux-aarch64::zlib-1.2.13-h998d150_1


  57. Proceed ([y]/n)? y


  58. Downloading and Extracting Packages:

  59. Preparing transaction: done
  60. Verifying transaction: done
  61. Executing transaction: done
  62. #
  63. # To activate this environment, use
  64. #
  65. # $ conda activate myenv
  66. #
  67. # To deactivate an active environment, use
  68. #
  69. # $ conda deactivate

  70. root@myd-lr3576x-debian:/home/myir/pro_learn#
復制代碼

然后再激活環(huán)境:

  1. root@myd-lr3576x-debian:/home/myir/pro_learn# conda activate myenv
  2. (myenv) root@myd-lr3576x-debian:/home/myir/pro_learn#
復制代碼

2、查看python版本號:

  1. (myenv) root@myd-lr3576x-debian:/home/myir/pro_learn# python --version
  2. Python 3.9.20
復制代碼

3、使用conda install numpy等來(lái)安裝組件,安裝好后用pip list查看

編寫(xiě)測試代碼:

  1. import numpy as np
  2. from sklearn.datasets import load_digits
  3. from sklearn.neural_network import MLPClassifier
  4. d = load_digits()
  5. digits = d["data"]
  6. labels = d["target"]

  7. N = 200
  8. idx = np.argsort(np.random.random(len(labels)))
  9. xtest, ytest = digits[idx[:N]], labels[idx[:N]]
  10. xtrain, ytrain = digits[idx[N:]], labels[idx[N:]]
  11. clf = MLPClassifier(hidden_layer_sizes=(128, ))
  12. clf.fit(xtrain, ytrain)

  13. score = clf.score(xtest, ytest)
  14. pred = clf.predict(xtest)
  15. err = np.where(pred != ytest)[0]
  16. print("score:", score)
  17. print("err:", err)
  18. print("actual:", ytest[err])
  19. print("predicted:", pred[err])
復制代碼


在代碼中,使用MLPClassifier對象進(jìn)行建模,訓練測試,訓練數據集非?,訓練4次后可以達到0.99:

【總結】
米爾的這款開(kāi)發(fā)板,搭載3576這顆強大的芯片,搭建了深度學(xué)習的環(huán)境,進(jìn)行了基礎的數據集訓練,效果非常好!在書(shū)中記錄訓練要幾分鐘,但是這在這款開(kāi)發(fā)板上測試,只要幾秒鐘就訓練完畢,書(shū)中說(shuō)總體準確率為0.97,但是我在這款開(kāi)發(fā)板上有0.99的良好效果!


本文地址:http://selenalain.com/thread-881481-1-1.html     【打印本頁(yè)】

本站部分文章為轉載或網(wǎng)友發(fā)布,目的在于傳遞和分享信息,并不代表本網(wǎng)贊同其觀(guān)點(diǎn)和對其真實(shí)性負責;文章版權歸原作者及原出處所有,如涉及作品內容、版權和其它問(wèn)題,我們將根據著(zhù)作權人的要求,第一時(shí)間更正或刪除。
您需要登錄后才可以發(fā)表評論 登錄 | 立即注冊

相關(guān)視頻

關(guān)于我們  -  服務(wù)條款  -  使用指南  -  站點(diǎn)地圖  -  友情鏈接  -  聯(lián)系我們
電子工程網(wǎng) © 版權所有   京ICP備16069177號 | 京公網(wǎng)安備11010502021702
快速回復 返回頂部 返回列表
午夜高清国产拍精品福利|亚洲色精品88色婷婷七月丁香|91久久精品无码一区|99久久国语露脸精品|动漫卡通亚洲综合专区48页